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A NATURAL MAP ON AN ORE EXTENSION

Eun-Hee Cho* and Sei-Qwon Oh**

Abstract. Let δ be a derivation in a noetherian integral domainA.
It is shown that a natural map induces a homeomorphism between
the spectrum of A[z; δ] and the Poisson spectrum of A[z; δ]p such
that its restriction to the primitive spectrum of A[z; δ] is also a
homeomorphism onto the Poisson primitive spectrum of A[z; δ]p.

Let R be a k-algebra and let h be a nonzero, nonunit, non-zero-divisor
and central element of R such that R/hR is commutative. Then R/hR
becomes a Poisson algebra with Poisson bracket

(1) {a, b} = h−1(ab− ba)

for a, b ∈ R/hR, which is called a semiclassical limit of R and R is called
a quantization of its semiclassical limit. One estimates that a class D
of nontrivial algebras R/(h− λ)R, λ ∈ k, shares its algebraic structure
with Poisson algebraic structure of R/hR since the multiplication of
R/(h−λ)R and the Poisson bracket (1) of R/hR are induced by that of
R. In fact, there are many positive evidences, for instance, see [8], [4] and
[1], [5], [10], [9]. In [9] and [5], the second author constructed a natural
map from a quantized algebra onto its semiclassical limit which can
explain relationships between algebraic structures of quantized algebra
and Poisson structures of its semiclassical limit.

Let δ be a derivation in a noetherian integral domain A. Then, in
[3], Jordan proved that the spectrum of A[z; δ] is homeomorphic to the
Poisson spectrum of A[z; δ]p such that its restriction to the primitive
spectrum of A[z; δ] is also a homeomorphism onto the Poisson primitive
spectrum of A[z; δ]p. In usual, it is difficult for a map to be a home-
omorphism between two spaces. In this paper, it is established that
the natural map in [9] and [5] induces a homeomorphism between the
spectrum of A[z; δ] and the Poisson spectrum of A[z; δ]p such that its
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restriction to the primitive spectrum of A[z; δ] is also a homeomorphism
onto the Poisson primitive spectrum of A[z; δ]p.

Assume throughout the paper that k denotes a base field of charac-
teristic zero and that all algebras considered have unities.

Let A be a finitely generated commutative k-algebra and domain
with a non-zero derivation δ. Then there exists the skew polynomial
algebra A[z; δ]. Refer to [2, Chapter 2] for details of skew polynomial
algebra which is frequently called Ore extension. On the other hand,
there exists the Poisson polynomial algebra A[z; δ]p which is the Poisson
algebra A[z] with Poisson bracket

{A,A} = 0, {z, a} = δ(a)

for all a ∈ A. Refer to [6, 1.1] for details of Poisson polynomial algebra.
The derivation δ on A is extended to a k[t]-derivation on A[t], still

denoted by δ, by setting δ(t) = 0. Hence (t− 1)δ is a derivation on A[t]
and thus there exists the skew polynomial k[t]-algebra

B := A[t][z; (t− 1)δ].

Note that B is a domain and thus the central element t − 1 ∈ B is a
nonzero, nonunit and non-zero-divisor such that

B1 := B/(t− 1)B

is commutative. Hence B1 becomes a Poisson algebra with Poisson
bracket

{a, b} = (t− 1)−1(ab− ba)

for a, b ∈ B1.

Lemma 1. B1
∼= A[z; δ]p as Poisson algebras.

Proof. It is easy to see that B1
∼= A[z] as commutative algebras since

A[z] ∩ (t − 1)B = {0}. For all a, b ∈ A, {a, b} = 0 and {z, b} = δ(b) in
B1. Hence the result follows.

Set K = k \ {a ∈ k|an = 1 for some positive integer n} and

Bλ := B/(t− λ)B

for all λ ∈ K. Note that 1 /∈ K and that Bλ is a nontrivial k-algebra
since t− λ is a nonzero and nonunit for all λ ∈ K.

Lemma 2. For each λ ∈ K, Bλ
∼= A[z; (λ − 1)δ] ∼= A[z; δ] as k-

algebras.
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Proof. The map from B into A[z; (λ − 1)δ] defined by z 7→ z and
a(t) 7→ a(λ) for all a(t) ∈ A[t] is an epimorphism with kernel (t − λ)B.
Hence Bλ

∼= A[z; (λ− 1)δ].
The map from A[z; (λ− 1)δ] into A[z; δ] defined by z 7→ (λ− 1)z and

a 7→ a for all a ∈ A is an isomorphism since λ ̸= 1 for all λ ∈ K. It
completes the proof.

Lemma 3. The map

γ : B →
∏
λ∈K

Bλ, γ(b) = (γλ(b))λ∈K

is a monomorphism, where γλ is the canonical projection from B onto
Bλ = B/(t− λ)B.

Proof. Since B is a skew polynomial algebra A[t][z; (t − 1)δ], every
element b ∈ B is expressed uniquely by b =

∑
i ai(t)z

i for some ai(t) ∈
A[t] and each ai(t) is expressed uniquely by ai(t) =

∑
j cijt

j for some

cij ∈ A. If γ(b) = 0 then
∑

j cijλ
j = 0 for all λ ∈ K and thus cij = 0 for

all i, j. It follows that b = 0 and thus γ is a monomorphism.

By Lemma 3, there exists the composition of γ−1 and γ1

Γ : γ(B)
γ−1

−→ B
γ1−→ B1, Γ(x) = γ1γ

−1(x)

which is a k-algebra epimorphism, where γ1 : B → B1 = B/(t− 1)B is
the canonical projection.

As in [5, Remark 3.2], let q̂ be a parameter taking values in K and let
Bq̂ be the k-algebra obtained by replacing λ in Bλ by q̂. That is, Bq̂ is
the k-algebra defined by B/(t−q̂)B, which is isomorphic to A[z; (q̂−1)δ].
Let ̂ : Bq̂ →

∏
λ∈K

Bλ, ̂(b) = (b|q̂=λ)λ∈K.

Then ̂ is a k-algebra homomorphism such that ̂ (q̂) = (λ)λ∈K and̂(a) = (a)λ∈K for all a ∈ A. Set

B̂ =̂−1(γ(B)).

It is clear that B̂ is a k-subalgebra of Bq̂ and that there exists the
composition of Γ and ̂
(2) Γ̂ : B̂ −̂→ γ(B)

Γ−→ B1, Γ̂(b) = Γ(̂(b)).
Lemma 4. (1) (q̂ − 1)−1 /∈ B̂ and A ⊆ B̂.

(2) Γ̂(z) = z, Γ̂(q̂) = 1 and Γ̂(a) = a for all a ∈ A.

(3) For any ideal I of B̂, Γ̂(I) is a Poisson ideal of B1.
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Proof. [5, Remark 3.2] and [9, Theorem 1.4].

Lemma 5. Let q be an element of K. Then Bq = B̂.

Proof. Since q can take any element ofK, q plays a role as a parameter
taking values in K and thus q is equal to q̂ as parameters. Since q is an
element of K and Bq = B/(t− q)B ∼= A[z; (q − 1)δ],

f ∈ Bq ⇔ f =
∑
i≥0

ai(q)z
i for some ai(t) ∈ k[t]

⇔ f =

∑
i≥0

ai(t)z
i

 |t=q

⇔ f =

∑
i≥0

ai(t)z
i

 |t=q̂ ∈ B̂.

Hence Bq = B̂. (cf., [5, Lemma 3.6])

Let R be an algebra. The spectrum of R, denoted by SpecR, is the set
of all prime ideals ofR equipped with the Zariski topology. The primitive
spectrum, denoted by PrimR, is the subspace of SpecR consisting of all
primitive ideals of R. Similarly, let S be a Poisson algebra. The Poisson
spectrum of S, denoted by P. SpecS, is the set of all Poisson prime ideals
of S equipped with the Zariski topology. The Poisson primitive spectrum
of S, denoted by P.PrimS, is the subspace of P.SpecS consisting of all
Poisson primitive ideals of S. If S is noetherian then P.SpecS is a
subspace of SpecS since Poisson prime is prime.

An ideal I of A is said to be δ-ideal if δ(I) ⊆ I. A δ-ideal P is said to
be δ-prime if, for any δ-ideals I and J , IJ ⊆ P implies I ⊆ P or J ⊆ P .

Lemma 6. The map

(3) φ : Spec B̂ −→ P.SpecB1, φ(P ) = Γ̂(P )

is a homeomorphism.

Proof. Let us find SpecBq and P. SpecB1. Note that Bq
∼= A[z; (q −

1)δ] and B1
∼= A[z; δ]p by Lemma 2 and Lemma 1, that δ(A)Bq is an

ideal of Bq and that δ(A)B1 is a Poisson ideal of B1. Set

Spec1Bq = {P ∈ SpecBq| δ(A)Bq ⊆ P}
P. Spec1B1 = {P ∈ P. SpecB1| δ(A)B1 ⊆ P}.
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Since Bq = B̂ by Lemma 5 and Γ̂(z) = z, Γ̂(a) = a for all a ∈ A

by Lemma 4(2), we have Γ̂(δ(A)Bq) = δ(A)B1. Hence φ is bijective
between Spec1Bq and P. Spec1B1 since

Bq/δ(A)Bq
∼= (A/δ(A)A)[z] ∼= B1/δ(A)B1.

By [3, Lemma 3.2, 3.3] and [7, 2.2],

SpecBq \ Spec1Bq = {IBq|I is a δ-prime ideal of A such that δ(A) * I},
SpecB1 \ Spec1B1 = {IB1|I is a δ-prime ideal of A such that δ(A) * I}.

Hence φ is a bijection between SpecBq \ Spec1Bq and P. SpecB1 \
P.Spec1B1 since Γ̂(a) = a for all a ∈ A. It follows that φ in (3) is
a homeomorphism from SpecBq onto P.SpecB1 by Lemma 5.

Now we can prove the following theorem.

Theorem 7. [3, Theorem 3.6] The map (3) induces a homeomor-
phism from SpecA[z; δ] onto P. SpecA[z; δ]p such that its restriction to
PrimA[z; δ] is also a homeomorphism onto P.PrimA[z; δ]p.

Proof. The map (3) induces a homeomorphism from SpecA[z; δ] onto

P.SpecA[z; δ]p by Lemma 2, Lemma 5 and Lemma 6 since Γ̂ is a map
preserving inclusions. Moreover, the restriction of (3) to PrimA[z; δ] is
also a homeomorphism onto P.PrimA[z; δ]p by [3, Corollary 4.4].
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